

NEW ORLEANS CHAPTER EST. 1982

Drilling-with-Casing (DwC[™]) Overcoming Wellbore Stability Issues

Steve Rosenberg – U.S. Region Product Line Manager

Tuesday April 21st, 2009

Presentation Outline

- Definition and Benefits of DwC
- Drilling Hazard Mitigation Value
- DwC Hydraulics.
- DwC Systems
- Drillable DrillShoes
- Casing Drive Systems
- Liner Drilling
- Applications Engineering
- Case Histories
- Future DwC Technology

© 2006 Weatherford. All rights reserved.

What is DwC[™] Technology?

Drilling-with-Casing/Liner technology uses the casing string as the 'drill string' instead of drill pipe.

DwC reduces well construction costs and improves drilling efficiency.

Key Value Drivers for DwC[™]

Cost/Time Reduction

Problem Resolution

DwC[™] / DwL[™] Benefits

- Increased safety. Reduced trips and less handling of heavy BHA's
- Improve efficiency by eliminating flat spots in the drilling curve = Reduced Well Construction Costs
- Improved wellbore quality (less wellbore tortuosity)
- Improved hole cleaning
- Risk reduction and problem mitigation (lost circulation, unstable formations, depleted reservoir sections)
- Trip margin requirement eliminated
- Getting casing to bottom

Drilling Hazard Mitigation Problem Incidents – GOM Shelf Gas Wells

Wellbores Drilled 1993 – 2002; Water Depth = <600 feet

Client Value

Drilling Hazard Mitigation

The Issue

- Drilling hazards add 12% to drilling time
- 50% of hazards relate to pressures and wellbore instability (pie chart to right shows a breakdown of these drilling hazards)
- As fields mature, depletion issues increase
- Conventional methods are time consuming, costly and largely ineffective

The Answer

- Apply proper technology to address issue
- Drilling with casing, expandable tubulars and managed pressure drilling
- Combine complementing technologies to deliver integrated engineered systems and techniques

Drilling Hazard Mitigation

Drilling with Casing DwC[™]

Controlled Pressure Drilling®

 United Ergenering Excellent

 United Excellent

 United Excellent

A suite of technologies that individually, or in combination, radically reduce non-productive time due to drilling hazards.

Solid Expandable Systems

© 2006 Weatherford. All rights reserved.

Hidden NPT - Time reduction

Non-Productive Time (NPT)

© 2006 Weatherford. All rights reserved.

Non-Productive Time (NPT)

Lost Circulation: Time spent fighting and curing losses

© 2006 Weatherford. All rights reserved.

What is the "Smear" or "Plaster" Effect?

Industry belief the 'Smear' effect cures or reduces lost circulation

Smear effect

- Finer ground cuttings
- 10% to 20% less cuttings circulated to the surface

DwC Hydraulics

DwC[™] vs Conventional Annular Flow

	Hole	OD	OD	Flow	Annulus Area, in^2		V _{ann} , ft/min		DwC V _{ann}
	Size	DP	Csq	Rate, gpm	Conv	DwC	Conv	DwC	vs Conv
	8 1/2	5 1/2	7	500	33	18	292	527	1.8 X
	12 1/4	5 1/2	9 5/8	800	94	45	164	341	2.1 X
	17 1/2	5 1/2	13 3/8	1000	217	100	89	192	2.2 X
Weatherford	All 126 reserved.	5 1/2	20	1100	507	217	42	98	2.3 X

DwC[™] ECD with 13-3/8" Casing

13-3/8" DwC ECD Comparison 1500ft, 900gpm, 8.6ppg SW

DwC[™] ECD with 9-5/8" Casing

9-5/8" DwC ECD Comparison 1500ft, 600gpm, 9.6ppg 13.0YP mud

Today's DwC[™] Technology

BHA latched into The Lower Casing Joint Retrievable Bits & BHA's

Cement-in-Place Non-Retrievable DwC System Drillable Drill Shoes

DrillShoe[™] and Latch Systems Compared

Drillable DrillShoe System					
0	Advantages	Disadvantages			
	Low Cost	Limited directional control			
ł	Simple to operate	Cased hole logs only			
8	No rig modifications required	Limited DrillShoe selection			
ľ	Zero risk of irretrievable tools in the hole				
	Cementing can commence immediately TD is reached				

Latch System					
	Advantages	Disadvantages			
	Ability to steer	High Cost			
	MwD/LwD capability	More complicated to set up and operate			
	Wide range of bit selections to suit formation and distance	Rig modification required			
		Risk of irretrievable tools in the hole			
		Unable to cement immediately upon reaching TD			

© 2006 Weatherford. All rights reserved.

DrillShoe[™] 2

The DrillShoe[™] is made in 2 parts:

- The "body" is machined from a piece of 4145 ASI Steel bar.
- 2. The "nose" is machined from Aircraft Grade Aluminium. 6mm round pieces of TSP (Thermally Stable Polycrystalline Diamond) are then pressed into pre-drilled holes on the front of the blades. The blades are then hardfaced with HVOF Tungsten Carbide.
- 3. Available in 3, 4 and 5 blade designs

7,000 psi CCS Formations Excellent Reaming Tool

DwC DrillShoe[™] 2 Construction

© 2006 Weatherford. All rights reserved.

DrillShoe[™] 3

- 5 or 6 Bladed PDC Bit
- 13 to 19 mm PDC Cutters
- Up to 20,000 psi CCS
- Converts to drillable cement shoe
- Simple pressure cycle
- Drillout with tri-cone or PDC Bit

DrillShoe[™] 3

- Drills like a PDC bit
- After simple pressure cycle, DrillShoe 3 becomes drillable
- Cement as normal
- Drill-thru with a normal PDC bit
- 15,000 to 20,000 psi CCS

Contributions to NPT Running Casing and Liner

Casing Running NPT Analysis by North Sea Operator Non productive days due to tight hole/stuck pipe: 57 days over 27 months. Excluding cost impact of setting casing high.

Centralizers for DwC Applications

Surface Drive Systems

Surface Drive Systems

Internal Casing Drive Tool (ICDT)

Casing Drive System (CDS)

OverDrive™

OverDrive[™] Casing Running and Drilling System

- Applications (rigs with top drives)
 - Casing Running
 - Drilling & Reaming w/ Casing
 - Extended Reach and Deviated Wells
 - Troublesome Well Bores
 - Safety Driven Operations

OverDrive System Features

- Removes personnel and equipment from derrick and rig floor
- Eliminates need for conventional tongs, elevators, and related personnel.
- Fill-up tool design allows switching between fill-up and circulation modes without repositioning tool.
- Multiple safety interlocks enhance efficiency and safety by preventing unplanned events such as dropped objects.
- Used for pushing down, reciprocating, circulating, and rotating casing if required.
- Torque sub measures the true torque applied to the connection without erroneous torque readings from mechanical losses and friction in the top drive and hydraulic swivel.

Liner Drilling Applications

- Depleted Formations
- Loss Zones
- Pressure Transition Zones
- Managed Pressure Drilling
- Unstable Formations
- Reaming liner through problem zones
- Just getting the Liner to bottom

Nodeco Liner Drilling/Reaming Systems

- Drillable casing bit or conventional bit
- Float Collar (auto-fill or conventional)
- Centralizers (in-line or solid slip-on)
- Hydraulic rotating or rotatable hanger
- Liner Top Packer (integral or second trip)
- Retrievable seal mandrel
- High torque running tool
- Effective junk screening
- Diverter tool (optional)
- Drill Pipe to surface

Mechanically Expanded Ball Seat

- Ball released with mechanical expansion
- No pressure surge to formation
- Can not prematurely shear out before hanger set and running tool released
- Enables higher shear pin setting pressures for hanger and running tool

BLTT Liner Drilling System

- Drillable Casing DrillShoe[™] (or conventional bit)
- 5", 5-1/2",7", 7-5/8",13-5/8" Liner Sizes
- 2nd Trip Packer Capability
- No Liner Hanger Set Liner on Bottom
- Transmit torque to liner outer sleeve through spline.
 (torque > most DP connections)
- 5" Tool Torque = 35K ft-lbs.
- 7-5/8" Tool Torque = 53,000 ft-lbs.
- 13-5/8" Tool Torque = 80,000 ft-lbs.
- Δ P will not release running tool A drop ball pumped down to setting sleeve with hydraulic pressure is required to release running tool.
- Drill Pipe to surface

Benefits of Reaming with Liners

- Maximum Insurance to get the Liner to bottom
- Minimum impact to normal running operations
- No need for extra wiper trips
 - Eliminate Trip Margin Required.
- Minimize mud losses
- Minimum open hole time / formation damage
- Reduces equipment handling (better HSE)

Gulf of Mexico Shelf DwC Opportunities

GoM Conductor and Surface Casings DwC

- Economic savings can be achieved using DwC techniques
- Average around 26% drilling cost savings based upon flat time reduction
- Savings as much as \$350K without additional individual savings if 16" and 10-3/4" casing are replaced with 9-5/8" DwC
- Savings still realized if only 10-3/4" section utilizes DwC technology

Financial Analysis Study – Drill in 20-in Conductor Casing with HP Housing

- Spread Rate \$550k
 - Projected Time Savings = 24.5% or 24 hours
 - Projected Financial Savings = \$380k

Applications Engineering

PLANNING IS KEY TO SUCCESSFUL DwC OPERATIONS!!

DwC Planning Tools

- Analyze electric logs to determine compressive strength
- D-Exponent
- Mud Logs
- Drill Bit Records
- Connection Design
- Torque Drag Model
- Stress Cycles Model

DwC Connection Design

Proven Connections

- Standard Buttress
- Modified Buttress GB CDE, DWC/C
- Hydril Wedge Threads 513, 521, 523, 563
- Vam SLIJ II, Vam Top
- Hunting SLSF

Design Factors

- MU Torque
- DLS critical when rotating off whipstocks
- Fatigue (Stress-Cycles Plot)
- Torque Drag Modeling

Estimation of load and Number of cycle to failure for 7" 26# VM80 13Cr VAM TOP for 4.86°/100ft bending

Surface Torque Plot				
Case:	Rotating On Bottom at 10 kips, 1000 ft-lbf Torque at Bit			
Friction Factor:	CHFF 0.20 - 0.30 / OHFF 0.35 – 0.55			
Remarks:	-			

Figure 13: Surface Torque at CHFF 0.20 / OHFF 0.35 - 0.55

Weight on Bit Plo	Weight on Bit Plot				
Case:	Rotating On Bottom at 10 kips, 1000 ft-lbf Torque at Bit				
Friction Factor:	CHFF 0.20 - 0.30 / OHFF 0.35 - 0.55				
Remarks:	-				

Case Histories

© 2006 Weatherford. All rights reserved.

Client Value

Client Location Results	Mariner Energy MC 674 – Gulf of Mexico 7-5/8" DwL through thief zone @ 20,400' where 2 wellbores were lost due to severe losses		
Value	Enabled Operator to strategically set 7-5/8" liner in competent interval to < MW and drill depleted production zone with no reported OBM fluid losses.	States, 3	
Client	El Paso (OTC 17687)	Client	Pemex (SPE/IADC 105403)
Location	EI 364 – Gulf of Mexico	Location	Veracruz, Mexico – Gulf of Mexico
Results	DwL 269 ft, with 9-5/8" liner through catastrophic thief zone without losses. Previous wellbore lost over 3,000 bbls.	Results	Drilled with liner in high angle hole to reach fractured formation susceptible to extreme losses
Value	Saved 96 hours of rig time and approximately US\$ 750K	Value	Saved 39.5 days , representing a cost reduction of US\$ 4.5 million

Client Value

		P			
Client Spinnaker Exploration		1	Carrier Carrier Carrier		
Location	High Island – Gulf of Mexico	Su 🏟			
ResultsDwL system reams and drills through unstable shale and 2 ppge depleted sand in 38° hole without fluid losses.					
	Reamed and drilled 5-1/2" liner with DrillShoe 2 from 13,685-ft to 13798 -ft MD to reach planned liner TD obtaining 18.3 ppge FIT				
Value	Successfully installed liner by reaming and drilling through drilling hazards enabling client to subsequently drill required 4-1/2" hole for completion				
Client	CNOOC (SPE/IADC 118806)	. Client	Anadarko (OTC 18245)		
Location	Banuwati Field, Offshore Indonesia	Location	Salt Creek CO2 Injection Field, Wyoming		
Results	DwL system drills through wellbore instability and severe loss interval to reach liner objective.	Results	5" casing was drilled to 2,300-ft using DwC and UB technology due to high shallow		
	Drilled 7" liner with DrillShoe 3 from 9,968-ft to 10,317-ft MD in 68º hole successfully isolating drilling hazards	Value	overpressures (est @ 18 ppge). ROP was doubled and cementing was		
Value	DwL technology was successful getting liner to planned TD, where conventional methods were unsuccessful. Estimated \$1MM USD savings realized.		completed within 3 hrs. of reaching TD. The well did not have to be killed to run casing.		

Deepwater DwC..... The Future

GoM Non Sub-Salt Wellbores NPT (OTC 20220)

Based on the above cost/ft, this relates to \$ 128/ft for Wellbore Instability. Based on a hypothetical 20,000' MD well: \$ 2,500,000/Well

GoM Sub-Salt Wellbores NPT (OTC 20220)

Based on the above cost/ft, this relates to \$ 380/ft for Wellbore Instability. Based on a hypothetical 20,000' MD well: \$ 7,600,000/Well

Why Deepwater DwC??

•Deepwater operations are notoriously expensive

•Daily rig spread rates frequently exceeding \$750,000/day

•Ability to apply innovative technology to reduce time/cost spent in challenging sub-sea environments is a hurdle many operators face.

•The development of a system based on proven DwC technology that enhances drilling efficiency and mitigates many drilling hazards, can be applied in a Sub-Sea Environment.

•Conservative time savings estimates show Deepwater DwC to be 25% more efficient

DwC Applications – 6 Continents

© 2006 Weatherford. All rights reserved.

Weatherford DwC Market

- Focus on cement in place system
 - Time saving
 - Problem resolution
- Drilled > 800 wells to date
- > 750,000 feet drilled
- Manufactured and shipped 1,000 DwC systems to date
- Over 60 Clients

NEW ORLEANS CHAPTER EST. 1982

Drilling-with-Casing (DwC[™]) Overcoming Wellbore Stability Issues

Steve Rosenberg – U.S. Region Product Line Manager

Tuesday April 21st, 2009